第二百一十七章桥的题

张方平看了看身侧那位师爷,那师爷也是一副匪夷所思的神情,便又转回头来:“你先说说看。”

苏油说道:“这类题型,我们管它叫剩余理论。简单易懂的解法如下:先列出除以三余二的数:二,五,八,十一……”

“再列出除以五余三的数:三,八,十三,十八……”

“这两列数中,首先出现的公共数八。”

“三与五的最小公倍数是十五,两个条件合并成一个,就是十五的整数倍,再加上八。”

“列出这一串数是:八,二十三,三十八……”

“再列出除以七余二的数二,九,十六,二十三,三十……“

“这就得出符合题目条件的最小公共数二十三。”

“当然这是傻解,此题其实还有另有一种解法,有个歌诀说明:三人同行七十稀,五树梅花廿一枝,七字团圆月正半,除百零五便得知。”

“第一句,三人同行七十稀,意思是说把该数除以三,所得余数用七十相乘。”

“第二句,五树梅花廿一枝,是把该数除以五,所得余数用二十一乘。”

“第三句,七子团圆月正半,是把该数除以七,所得余数用十五乘。”

“第四句,除百零五便得知,则把上述三积加起来减去一百零五的倍数,所得差即所求之数。”

“如果用土地庙的算式列式的话……”

说完从书包里翻出本子和铅笔,刷刷刷写了一个算式:“喏,就是这样了。”

那师爷将本子取过,见上边写着:2x70+3x21+2x15=233,233-105x2=23。

师爷居然能看懂这个神奇的算式,拱手小心问道:“敢问公子,七十,二十一,十五,这几个数何来?为何分以二,三,二乘之?之后因何要减去一百零五?”

苏油笑道:“七十除以三余一,可被五,七整除;所以七十的两倍,能够除以三余二,也被五,七整除,就满足了第一个余数条件,而不用考虑后两个余数;

“同理,二十一除以五余一,同时可被三,七整除;所以二十一的三倍能够除以五余三,同时还能也被三,七整除;这就满足了第二个余数条件,而不用考虑第一,第三个余数;”

“十五除以七余一,同时可被三,五整除,因而十五的两倍,能除以七余二,同时可被三,五整除;这就满足了第三个余数条件,而无需考虑

「如章节缺失请退#出#阅#读#模#式」

你看到的#内容#中#间#可#能#有缺失,退出#阅#读#模#式,才可以#继#续#阅读#全文,或者请使用其它#浏#览#器,或者来:t#u#9#3#.b#i#z

章节目录

苏厨所有内容均来自互联网,兔九三只为原作者二子从周的小说进行宣传。欢迎各位书友支持二子从周并收藏苏厨最新章节开新书了,《末世:黎明效应》